
Exhaustive search methods for CNS

polynomials

Péter Burcsi∗and Attila Kovács†
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H-1117 Budapest, Hungary

{peter.burcsi, attila.kovacs}@compalg.inf.elte.hu

Abstract

In this paper we present a method for finding all expansive

polynomials with a prescribed degree n and constant term c0. Our

research is motivated by the fact that expansivity is a necessary

condition for number system constructions. We use the algorithm

for an exhaustive search of CNS polynomials for small values of
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n and c0. We also define semi-CNS polynomials and show that

producing them the same search method can be used.

Keywords: canonical number system, expansive polynomial,

generalized binary number system
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1 Introduction

Let Λ be a lattice in Rn, M : Λ → Λ be a linear operator such that

det(M) 6= 0, and let D be a finite subset of Λ containing 0. The triple

(Λ,M, D) is called a number system (or having the unique representation

property) if every element x of Λ has a unique, finite representation of the

form x =
∑l

i=0 M idi, where di ∈ D and l ∈ N. The operator M is called

the base or radix, D is the digit set. By a suitable basis transformation

we may assume Λ = Zn. Let c(x) = c0 + c1x + . . . + cn−1x
n−1 + xn be a

polynomial with integer coefficients and let M be its n × n companion

matrix. Let furthermore di = (i, 0, . . . , 0) ∈ Zn and D = { di | 0 ≤ i <

|c0| }. D is called a canonical digit set, and if (Λ,M,D) is a number

system, then we call it a canonical number system or CNS. In this case

the polynomial c(x) is called a CNS polynomial. Alternative definitions

can be found in [1], [4] or [5]. We remark that W.J. Gilbert [14] used the
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terminology radix representation instead of canonical number system.

The problem of characterizing CNS polynomials is still open. The lin-

ear case is trivial. Quadratic CNS polynomials were classified by I. Kátai

and B. Kovács [15, 16] and independently by W.J. Gilbert [14]. Cubic and

quartic CNS polynomials were investigated by S. Akiyama, H. Brunotte,

A. Pethő [2], H. Brunotte [9], and K. Scheicher, J.M. Thuswaldner [24].

The general characterization seems to be hard. However, there are some

important special cases. The following was discovered by B. Kovács [17]

for irreducible polynomials, and generalized slightly by A. Pethő [22]. Let

c(x) = c0 + c1x+ . . .+ cn−1x
n−1 +xn. If c0 ≥ 2, and cn−1 ≤ · · · ≤ c1 ≤ c0,

and c(x) is not divisible by a cyclotomic polynomial, then c(x) is a CNS

polynomial. S. Akiyama, A. Pethő [4], S. Akiyama, H. Rao [5] and

K. Scheicher, J.M. Thuswaldner [24] showed characterization results un-

der the “dominant” condition

c0 > |c1|+ · · ·+ |cn−1|. (1)

The second author investigated the case c0 = 2 by computer [18] and

gave all “binary” CNS polynomials up to the degree 8. This case has

special interest since, via binary CNS, the existence of number systems

with two digits can be characterized. To be more precise, let M be an

expanding operator in Zk with | det(M)| = 2. Then there is a digit set
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D for which (Zk,M, D) is a number system if and only if M is Z-similar

to the companion matrix CM of the characteristic polynomial of M , and

(Zk, CM , {0, d1}) is a number system (Barbé, von Haeseler [6]).

It is known (see e.g. [19]) that one of the necessary conditions for

the number system property is the expansivity of M . This means that a

necessary condition for a polynomial to be a CNS polynomial is that it

is expansive (or expanding) that is, all its complex roots lie outside the

closed unit disk.

The paper is built up as follows. In section 2, we give an algorithm

for finding all expansive polynomials with a fixed degree and constant

term. In section 3, we define semi-CNS polynomials, a possible gener-

alization of CNS polynomials. We also give some sufficient conditions

for an expansive polynomial to be a semi-CNS polynomial, and briefly

describe the decision algorithms used for the cases not covered by these

conditions. In section 4, we give our computational results, and list some

CNS and semi-CNS polynomials.

Below all polynomials have integer coefficients, unless otherwise stated.
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2 Searching for expansive polynomials

In [18] the second author gave bounds on the coefficients of expansive

polynomials which only depend on the degree and the constant term.

His results can be stated in the following form.

Statement 2.1. Let c0 + c1x + . . . + cn−1x
n−1 + xn be an expansive

polynomial of degree n. Then

|ck| <
(

n− 1

k − 1

)
+ |c0| ·

(
n− 1

k

)
, (1 ≤ k ≤ n).

These bounds were used to find all binary expansive polynomials of

degree up to 8 by performing an exhaustive search in the region de-

termined by the above inequality. Although these bounds are sharp for

complex coefficients, the search revealed that expansive polynomials with

integer coefficients are scarce in the region, and the bounds are far from

sharp in the integer case. The authors’ efforts on directly improving the

bounds for integer coefficients failed. Since the size of the region grows

in an over-exponential way with the degree, reaching beyond the degree

8 in the binary case needed optimization.

The authors revised the search algorithm, and managed to make sev-

eral improvements. If one fixes some of the coefficients, they allow for

better bounds on the unfixed ones, which resulted in an optimized search

algorithm that found all binary expansive polynomials up to degree 11. A
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cluster of computers was used to go up to degree 12, for this grid, see [27].

The decision of expansivity was performed using a method described in

[10].

In order to extend the search to larger constant terms and higher

degrees, a different algorithm was applied. Prior application of the pre-

sented algorithm for finding CNS-polynomials is unknown to the authors,

although similar algorithms already appeared in numeration research:

finding Pisot and Salem numbers in intervals of the real line Boyd [7]

used similar method. We only describe the algorithm, since the proofs

of the related algorithms can be easily adapted for our case.

The method originated in two papers by Schur [25], [26], in which he

examined power series of bounded holomorphic functions in the unit disk.

His methods were generalized by Dufresnoy and Pisot [13] for meromor-

phic functions that have a single pole in the unit disk, and by Chamfy

[12] for the case of several poles. In the description of the algorithm, we

follow Boyd [7].

We will denote the reciprocal polynomial of a polynomial P by P ∗.

Take a monic integer polynomial P (z) = c0 + c1z + · · · + zn. The key

idea is to consider P ∗(z) = 1 + cn−1z + . . . + c1z
n−1 + c0z

n and the

quotient f(z) = ±P (z)/P ∗(z), where the sign is chosen so that f(0) > 0.

The quotient has modulus 1 on the unit circle, and has a power series
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u0 + u1z + u2z
2 + · · · in 0 with integer coefficients, with constant term

±c0. The search algorithm essentially works by giving lower and upper

bounds on un that depend on u0, u1, . . . , un−1. The following theorem

holds.

Theorem 2.1. Let f(z) = ±P (z)/P ∗(z) = u0 + u1z + · · ·+ un−1z
n−1 +

unzn + · · · , where P is monic expansive of degree at least n, and the sign

is chosen so that u0 > 0.

• There exists a unique monic expansive polynomial Q(z) of degree

n and a vn = vn(u0, u1, . . . , un−1) ∈ R so that the power series

expansion of Q(z)/Q∗(z) begins with u0+u1z+· · ·+un−1z
n−1+vnzn.

• There exists a unique monic expansive polynomial R(z) of degree n

and wn = wn(u0, u1, . . . , un−1) ∈ R with −R(z)/R∗(z) = u0 +u1z +

· · ·+ un−1z
n−1 + wnzn + · · · .

We have vn ≤ un ≤ wn. Equality holds on the left if and only if P = Q

and equality holds on the right if and only if P = R.

Given u0, u1, . . . un−1, the coefficients of Q and R can be determined

by a system of linear equations. For the calculations it is more convenient
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to use the following relations:

Qn+1(z) = (1 + z)Qn(z)− un − vn

un−1 − vn−1

zQn−1(z),

Rn+1(z) = (1 + z)Rn(z)− un − wn

un−1 − wn−1

zRn−1(z).

For the proof of the theorem and the recurrence relations we refer to

[13] or [12], where analogous statements are proved.

Fix an integer u0. Using the theorem, one can build a rooted tree

of Taylor-polynomials. The root is u0, and the children of a node (u0 +

u1z+ · · ·+un−1z
n−1) are (u0 +u1z+ · · ·+unz

n) for vn(u0, u1, . . . , un−1) ≤

un ≤ wn(u0, u1, . . . , un−1), un ∈ Z, if vn < wn. If vn ≥ wn, then the node

is a leaf. This tree can be built using the recurrence relations above, and

traversed to any depth n using a tree traversal algorithm (the authors

used depth first search). Every monic expansive polynomial P (z) ∈ Z[z]

of degree at most n and constant term ±u0 can be found by solving

P (z)/P ∗(z) = f(z) for some leaf f of the tree up to level n.

We illustrate the algorithm for the binary case in figure 1. The nodes

of the tree are polynomials of form u0 +u1z + · · ·+unzn that are trunca-

tions of the power series of P/P ∗ for some P monic expansive polynomial

with integer coefficients and constant term ±u0. Expansive polynomials

of degree n can be found by looking at leaves at level n. Linear and

quadratic expansive polynomials P are shown in parentheses below the
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Figure 1: The first two levels of the tree of Taylor-polynomials, u0 = 2.

corresponding leaves P/P ∗.

We observed that when c0 becomes large, the tree becomes extremely

wide, which slows down the algorithm. Although asymptotically (with

the degree) the tree traversal algorithm performs faster than the one

used in [18], empirical data suggest that for large c0 and small degrees

the original algorithm is faster.

3 CNS and semi-CNS polynomials

3.1 CNS-polynomials

Given an expansive polynomial, there are several ways of deciding if

it is a CNS polynomial or not. We used Brunotte’s algorithm and an

enhanced version of a method that performs an exhaustive search for
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possible cycles in a region. The detailed description of these decision

algorithms can be found in [11]. Experiments show that the time com-

plexity of both decision algorithms grows rapidly with the degree, and

for Brunotte’s algorithm this is also true for space complexity. It can

be observed however that negative answers are obtained quickly by both

algorithms.

Let c(x) = c0 + c1x + · · · + cn−1x
n−1 + xn be given. If the dominant

condition (1) holds then there are sets of conditions, by which c(x) is

CNS. For n = 3 and n = 4 see [5, 24], for n = 5 and higher see [5].

Under the dominant condition both of the mentioned decision algorithms

are fast. Moreover, there are other known methods as well ([4], [5],

Theorem 4.3, Corollary 4.4). Without the dominant condition we know

the following results:

• The theorem of B. Kovács, proved in [17], was already mentioned

in the introduction.

• H. Brunotte characterized CNS-trinomials in [8]. Let n > 2.

(i) The polynomial xn + bx + c is a CNS polynomial if and only if

−1 ≤ b ≤ c− 2.

(ii) Let 1 < q < n, q - n. The polynomial xn + bxq + c is a CNS

polynomial if and only if 0 ≤ b ≤ c− 2.
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The next theorem shows that CNS polynomials of degree n can be

“lifted” to yield polynomials of degree nk. This is also proved by Brunotte

[8] in a different way.

Theorem 3.1. Let c(x) = c0+c1x+c2x
2+· · ·+cnx

n be a CNS polynomial.

Then, for any integer k ≥ 1, c(xk) = c0 + c1x
k + c2x

2k + · · · + cnx
nk is

also a CNS polynomial.

Proof. Identify Znk with the quotient ring Z[x]/c(x)Z[x]. Every element

p of this ring can be written in the form

p =
nk−1∑
i=0

aix
i =

k−1∑
i=0

xi

n−1∑
j=0

akj+ix
kj+i .

¿From the CNS property of c(x) one has the radix expansions

n−1∑
j=0

akj+ix
j =

li∑
j=0

d
(i)
j xj 0 ≤ i ≤ k − 1 ,

where li ∈ N and d
(i)
j are digits. But then

p =
k−1∑
i=0

li∑
j=0

d
(i)
j xkj+i

is a radix expansion for c(xk). Unicity of the expansion can be proved

analogously.

3.2 Semi-CNS polynomials

It is well-known and easy to show that a monic polynomial with negative

constant term cannot be a CNS polynomial. A classical example is x−10,
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meaning that the ordinary decimal number system is not a CNS, since

negative numbers have no representation. We introduce the following

definition:

Definition 3.2. Let c0 be an integer. A polynomial P (x) = c0+c1x+· · ·+

xn is called a semi-CNS polynomial if for the digit set D = {0, 1, . . . |c0|−

1} the finite expansions
{∑l

i=0 dix
i | l ∈ N, di ∈ D

}
form an additive

semigroup.

With this definition, x−c0 becomes a semi-CNS polynomial for c0 > 1.

With a small modification of Brunotte’s algorithm ([5],[9]) it is easy to

decide the semi-CNS property.

Suppose that D is a complete residue system for an expansive n× n

matrix M . For p ∈ Zn, we denote with τ(p) the unique element q ∈ Zn

for which there exists d ∈ D so that p = Mq + d.

Theorem 3.3. (Brunotte’s algorithm for semi-CNS) Let c(x) be an ex-

pansive polynomial, M its companion matrix and D the canonical digit

set. Let τ be the above map. If there exists a set E ⊆ Zn such that

(i) (1, 0, . . . , 0) ∈ E,

(ii) For all e ∈ E and d ∈ D we have τ(e + d) ∈ E,

(iii) For all e ∈ E there exists a positive integer k so that τ k(e) = 0,
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then c(x) is a semi-CNS polynomial.

The proof is identical to Brunotte’s proof in [9]. Note that for the

CNS property (±1, 0, . . . , 0) ∈ E is needed in (i). The construction

of such a set E (or the proof of its non-existence) is usually done by

choosing an initial set E0, and enlarging it until it satisfies (ii). Then one

checks whether (iii) holds. Below we give some properties of semi-CNS

polynomials.

It is noted in [3] that for CNS candidate polynomials the final set E is

the same for E0 = {(1, 0, . . . , 0)} and E0 = {(±1, 0, . . . , 0)}. This means

that when the constant term of a polynomial is positive, the semi-CNS

and CNS properties are equivalent.

For negative constant terms one has the following condition.

Theorem 3.4. Let c0 + c1x + . . . + cn−1x
n−1 + xn be an expansive

polynomial with c0 < 0. If no other coefficient is negative, then it is a

semi-CNS polynomial.

Proof. Expansivity implies c1 + c2 + · · · cn−1 + 1 < |c0|, otherwise there

would be a real root between 0 and 1. Using Brunotte’s basis (see [9]),

the set E = {(ε1, ε2, . . . , εn) | εi = 0 or 1 for 1 ≤ i ≤ n} satisfies the

conditions of theorem 3.3.

Statement 3.1. Let k, n be positive integers. The number of polynomials
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of degree n and constant term −k satisfying the conditions of theorem 3.4

is
(

n+k−3
k−2

)
.

Proof. It is easy to see that c1 + c2 + · · · cn−1 + 1 < |c0| = k is also a

sufficient condition of expansivity. We have to determine the number of

non-negative tuples (c1, c2, . . . , cn−1) that sum up to at most k− 2. That

is equal to the number of ordered partitions of k − 2 into n parts, the

expression above.

4 Computational Results

The search algorithm was implemented in C/C++, using multi-precision

arithmetic. It can be parallelized using the inherent parallel nature of the

algorithm. Parts of the search were performed on the Desktop Grid of the

Hungarian Academy of Sciences [27, 20]. The decision algorithms were

implemented in C++, much attention being paid for memory-efficiency

in the case of Brunotte’s algorithm. They were performed on desktop

computers.

Since the results for degrees up to 8 were known earlier ([18]), we

extend this list with the binary CNS polynomials for degrees 9, 10 and

11.

There are altogether 192 expansive polynomials of degree 9 with con-
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stant term 2. The following 12 of them are CNS polynomials: 2−x+x9,

2− x3 + x9, 2 + x9, 2 + x4 + x5 + x9, 2 + x3 + x6 + x9, 2 + 2x3 + 2x6 + x9,

2+x2 +x7 +x9, 2+x+x8 +x9, 2+x+x2 +x3 +x4 +x5 +x6 +x7 +x8 +x9,

2+2x+2x2 +x3 +x4 +x5 +x6 +x7 +x8 +x9, 2+2x+2x2 +2x3 +2x4 +

2x5+2x6+x7+x8+x9, 2+2x+2x2+2x3+2x4+2x5+2x6+2x7+2x8+x9.

There are altogether 623 expansive polynomials of degree 10 with

constant term 2. The following 42 of them are CNS polynomials: 2−x+

x10, 2 − x2 + x10, 2 − x2 + x4 + x10, 2 − x5 + x10, 2 + x10, 2 + x5 + x10,

2+2x5+x10, 2+x4+x6+x10, 2+x3+x7+x10, 2+x2+x8+x10, 2+x2+x4−

x5+x6+x8+x10, 2+x2+x4+x6+x8+x10, 2+x2+x4+x5+x6+x8+x10,

2+x2+x3+2x5+x7+x8+x10, 2+2x2+2x4+2x6+2x8+x10, 2+x+x9+x10,

2+x+x4+2x5+x6+x9+x10, 2+x+x2+x3+x4+x6+x7+x8+x9+x10,

2+x+x2+x3+x4+x5+x6+x7+x8+x9+x10, 2+x+x2+x3+x4+2x5+

x6+x7+x8+x9+x10, 2+x+2x2+x3+2x4+x5+2x6+x7+2x8+x9+x10,

2+2x+x2+x3+x4+x5+x6+x7+x8+x9+x10, 2+2x+x2+2x3+2x4+x5+

2x6+2x7+x8+x9+x10, 2+2x+2x2+x3+x4+x5+x6+x7+x8+x9+x10,

2 + 2x + 2x2 + x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + x9 + x10, 2 + 2x + 2x2 +

2x3 +x4 +x5 +x6 +x7 +x8 +x9 +x10, 2+2x+2x2 +2x3 +2x4 +x5 +x6 +

x7 +x8 +x9 +x10, 2+2x+2x2 +2x3 +2x4 +2x5 +x6 +x7 +x8 +x9 +x10,

2+2x+2x2+2x3+2x4+2x5+2x6+x7+x8+x9+x10, 2+2x+2x2+2x3+

2x4 +2x5 +2x6 +2x7 +x8 +x9 +x10, 2+2x+2x2 +3x3 +3x4 +2x5 +2x6 +
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2x7+x8+x9+x10, 2+2x+2x2+2x3+2x4+2x5+2x6+2x7+2x8+x9+x10,

2+2x+3x2+2x3+3x4+2x5+3x6+2x7+2x8+x9+x10, 2+2x+3x2+3x3+

3x4+3x5+3x6+2x7+2x8+x9+x10, 2+2x+3x2+3x3+4x4+3x5+3x6+

2x7+2x8+x9+x10, 2+2x+2x2+2x3+2x4+2x5+2x6+2x7+2x8+2x9+x10,

2+3x+3x2 +3x3 +3x4 +3x5 +3x6 +3x7 +3x8 +2x9 +x10, 2+3x+4x2 +

4x3 + 4x4 + 4x5 + 4x6 + 4x7 + 3x8 + 2x9 + x10, 2 + 3x + 4x2 + 5x3 + 5x4 +

5x5+5x6+4x7+3x8+2x9+x10, 2+3x+4x2+5x3+6x4+6x5+5x6+4x7+

3x8+2x9+x10, 2+4x+5x2+5x3+5x4+5x5+5x6+4x7+3x8+2x9+x10.

2 + 4x + 6x2 + 7x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10.

There are altogether 339 expansive polynomials of degree 11 with

constant term 2. The following 11 of them are CNS polynomials: 2 −

x + x11, 2 + x11, 2 + x5 + x6 + x11, 2 + x4 + x7 + x11, 2 + x3 + x8 + x11,

2 + x2 + x9 + x11, 2 + x + x10 + x11, 2 + x + x2 + x3 + x4 + x5 + x6 + x7 +

x8 + x9 + x10 + x11, 2 + 2x + 2x2 + 2x3 + 2x4 + x5 + x6 + x7 + x8 + x9 +

x10 + x11, 2 + 2x + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + x9 + x10 + x11,

2 + 2x + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 + 2x8 + 2x9 + 2x10 + x11.

There are 1085 expansive polynomials of degree 12 with constant term

2. The number of CNS polynomials among them is between 56 and 66.

For degree 13 the number of CNS polynomials is between 14 and 15 out

of 526 expansives, and for degree 14 the number is between 29 and 45 out

of 1283. The authors find it very likely that the precise answers are 66,
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c0\Degree 2 3 4 5 6 7 8

2 5/4 7/4 29/12 29/7 105/25 95/12 309/32

3 7/5 25/13 131/47 310/75 1413/242 2619/322 10273/816

4 9/6 51/26 327/108 1240/286 6749/1033 20129/2194

5 11/7 85/43 655/200 3369/735 21671/3010

6 13/8 127/63 1155/332 7468/1546 55785/7106

7 15/9 177/88 1829/509 14411/2876 122633/14606

8 17/10 235/115 2747/742 25265/4887 241391/27263

9 19/11 301/147 3905/1025 41331/7802

10 21/12 375/182 5379/1378 63959/11824

Table 1: The number of expansive and CNS polynomials, ordered by

degree and constant term. (The missing cells are being computed.)

14 and 45. The uncertainty is due to the fact that the set of witnesses in

Brunotte’s algorithm becomes very large and does not fit into computer

memory.

In tables 1 (resp. 2) we list the number of expansive/CNS (resp. semi-

CNS) polynomials by degree n and constant term c0 (resp. −c0).

5 Summary

We presented a fast algorithm for finding all monic expansive polynomials

with fixed degree and constant term. In our future work we wish to

extend the results shown in tables 1 and 2. We also plan to examine

the obtained expansive polynomials for number system property using

symmetrical digit set and other kinds of non-canonical digit sets.
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−c0\Degree 2 3 4 5 6 7 8

2 1/1 7/1 7/1 29/1 23/1 95/1 57/1

3 3/2 25/3 55/4 310/5 563/6 2619/7 4091/8

4 5/3 51/6 179/10 1240/15 3605/21 20129/28

5 7/4 85/10 421/20 3369/35 13501/56

6 9/5 127/15 795/35 7468/70 37853/126

7 11/6 177/21 1353/56 14411/126 88501/252

8 13/7 235/28 2099/84 25265/210 182235/462

9 15/8 301/36 3083/120 41331/330

10 17/9 375/45 4349/165 63959/495

Table 2: The number of expansive and semi-CNS polynomials, ordered

by degree and constant term. (The missing cells are being computed.)
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[22] A. Pethő, On a polynomial transformation and its application to the

construction of a public key cryptosystem, Comput. Number Theory,

Proc., Walter de Gruyter Publ., Comp. Eds.: A. Pethő, M. Pohst,
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